US009158473B2

a2 United States Patent

Haustein et al.

US 9,158,473 B2
*QOct. 13, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMS AND METHODS FOR

VIRTUALIZING STORAGE SYSTEMS AND

MANAGING DATA INDEPENDENTLY

(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(72)

Inventors: Nils Haustein, Soergenloch (DE);

Thorsten Krause, Mainz (DE)
(73) INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 14/450,459

Filed: Aug. 4, 2014

(65) Prior Publication Data

US 2014/0344541 Al Now. 20, 2014

Related U.S. Application Data

Continuation of application No. 13/786,609, filed on
Mar. 6, 2013, now Pat. No. 8,832,398, which is a
continuation of application No. 12/909,764, filed on
Oct. 21, 2010, now Pat. No. 8,423,737.

(63)

(30) Foreign Application Priority Data

Dec. 17,2009 (EP) woeoeveieiiiicicie 09179601

(51) Int.CL

GO6F 12/00 (2006.01)
GO6F 12/16 (2006.01)
GO6F 3/06 (2006.01)
GO6F 1120 (2006.01)
600

602
A migration for a storage
medium is triggered

Is source=target ?

yes

604
Determine source and target
Storage medium
606
Check copy mapping table:

608
Delste source copy from
copy mapping table

(52) US.CL
CPC GO6F 3/065 (2013.01); GO6F 3/0614
(2013.01); GOGF 3/0629 (2013.01); GO6F
3/0647 (2013.01); GO6F 3/0659 (2013.01);
GO6F 3/0665 (2013.01); GO6F 3/0683
(2013.01); GOGF 3/0685 (2013.01); GO6F
1172094 (2013.01); GOG6F 11/2056 (2013.01);
GO6F 2003/0695 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,353,878 Bl 3/2002 Dunham
7,707,375 B2 4/2010 Nabekura
7,865,707 B2 1/2011 Bittlingmayer et al.
2005/0080992 Al 4/2005 Massey et al.
(Continued)
OTHER PUBLICATIONS

Bunn et al., “SNIA Technical Tutorial—Storage Virtualization” 25
pages, Storage Networking Industry Association (SNIA), 2004.

(Continued)

Primary Examiner — Kevin Verbrugge
(74) Attorney, Agent, or Firm — Griffiths & Seaton PLLC

(57) ABSTRACT

Method, data processing systems, and computer program
products are provided for virtualizing and managing a storage
virtualization system (SVS) in a storage management archi-
tecture. Source data is copied from the source storage media
to target data in a target storage media based on a predefined
copy policy in a copy mapping table. A relation between the
source data and the target data is tracked in a copy mapping
table. It is determined if a copy of the requested data exists
using the copy mapping table.

20 Claims, 6 Drawing Sheets

612
Copy source storage medium
To target storage medium

614
delete source storage medium

|

610

Update migration mapping table
With new location of storage medium

US 9,158,473 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2006/0253549 Al
2007/0220248 Al
2008/0091896 Al
2008/0109620 Al
2008/0239346 Al
2009/0063765 Al

11/2006
9/2007
4/2008
5/2008

10/2008
3/2009

Arakawa et al.
Bittlingmayer et al.
Usami

Nabekura

Fujii et al.

Kottomtharayil et al.

OTHER PUBLICATIONS

“Mainframe Tape Virtualization (Tape-to-Disk)”, Aug. 26, 2009, 2
pages, URL http://www.ecei.com/mft2d html.

Whitehouse, Lauren, Enabling Tiered Storage Through Tape
Virtualization: Delivering More Performance, Reliability and Effi-
ciency at Lower Cost, Mar. 1, 2005, 8 pages, URL http://www.
thefreelibrary.com/
Enabling+tiered+storage+through+tape+virtualization: +delivering+more
... -a0134577399 Computer Technology Review.

US 9,158,473 B2

Sheet 1 of 6

Oct. 13, 2015

U.S. Patent

0]%5

My Jold
L @inbi4
Vel
11d
_sa) [sa) [sa
sd sd sd
E 4! ocl | |
3ad LA 11d vl
OAS
Y
0l 801 901 ¢0l
SINL _mEFo_ SI.Ld _mEQ_

001 24MoO3alydly

US 9,158,473 B2

Sheet 2 of 6

Oct. 13, 2015

U.S. Patent

9€1 ctl 01
14dd 1A 11d E

Z ainbi4 PEl

11d

vNF NNF 0cl
sd

902
202
SAS
0
¥0l 801} 901} 20}
SINL SN.Ld SN.Ld SNa
002 94N08HYDLY

US 9,158,473 B2

Sheet 3 of 6

Oct. 13, 2015

U.S. Patent

9ce

¢ ainbi4

90¢

.\:

s10d ylomiau pusyoeg

T

vee

S10d M}Jomiau pusijuod 4

|

404

¢c0¢

US 9,158,473 B2

Sheet 4 of 6

Oct. 13, 2015

U.S. Patent

¥ aInbi4

1SOY 0] PUBWIWIOD YO 9SB9|2J/IUNOWSIP pusg

9y

%

NNT/H3STTOA PusX3de(q 8Ses|aljunows|(

1424

A

»

a|ge) Buiddew Adoo ayepdn

Zly
%
NN71/43ST0A 186.e] o]
NN1/93STOA 924nos wiolj ejep AdoD
(V]87
soh

. ou ¢, AdoD

) 80%

o|qe] Buiddew Adod yoeynH
90

+

NN T3S TOA 10}
PUBLIWOD 9SB9|aunowsi(

SOAI903) dUIBUS pusIUO.H
1401

A

paysiul buisseooid eleq
‘pPUBLLLLIOD SPUSS)SOH
0¥y

US 9,158,473 B2

Sheet 5 of 6

Oct. 13, 2015

U.S. Patent

Buiddew 3g-34 91epdn
82¢s

ZPaysiul). §S800Y

9¢s

101es1uIWpe Aou puy
wa)sAs 1s0y 0} Jolle Joday
8l¢

¢ dlqejieae
so1doo aIoW auy
145

Adaoo pejos|es 0 }SoH
1o} $s800k Juaiedsuel) spirold
s

G a.nbi4

Jojeqisiuiwpe
Ayjou
ZLS

Adoo 1884 1X0U 199]8S
91¢

¢lednuap|
0cs

¢ dlqe|iene
AdoD pejos|ss s|

algey Buiddew 3g-34 e1epdn
A4S

pPazi|iin jses| si Adoo e BUIp|OH

wolsAs abelo)s Yyolym suiuisleg

90§

wnipsw abelols palsenbal jo sa1dod Alepuooss
pue Alewud Joy a|ge} Buiddew Adod ¥oeyD

¥0S

Wnipoll obelIo)s B Uo eleq
$5800E 0] SJUBM JSOH
20¢

009

~

US 9,158,473 B2

Sheet 6 of 6

Oct. 13, 2015

U.S. Patent

g 2.nbi4

wnipaw abelIo)s Jo UOIRIO| MU UJIAA
a|qe)} Buiddew uonelBiw ayepdn
019

A

wnipsw abelo]s 824N0S 8)18[8P
¥19

wnipsw sbelols 1abue} 0|
wnipaw abelols aainos AdoD
Zl9

a|ge) buiddew Adod
woJ} Adoo s2inos 83819Q
809

¢, 196181=90In0S S|
:a|gey Buiddew Adoo yo8ynH
909

wnipsw abeios
1e6.e) pue 821n0s sulwlIsla(d
709

ﬁ

paJ1abbiy s1 wnipsw
abe.ols e Joy uojelbiw v
209

US 9,158,473 B2

1
SYSTEMS AND METHODS FOR
VIRTUALIZING STORAGE SYSTEMS AND
MANAGING DATA INDEPENDENTLY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This applicationis a continuation application of U.S. appli-
cation Ser. No. 13/786,609, filed Mar. 6, 2013 that claims
priority to U.S. application Ser. No. 12/909,764, filed Oct. 21,
2010 that claims priority to European Patent Application No.
09179601.1, filed Dec. 17, 2009, and entitled “System and
Methods for Virtualizing Storage Systems of Different Kinds
and Providing Methods for Managing Data Independently”,
all of which are incorporated by reference.

BACKGROUND

1. Field of the Invention

The present invention relates to storage management, and
more particularly to a system for virtualizing and managing
storage devices, such as storage virtualization systems (SVS),
in a storage management architecture.

2. Description of the Related Art

Prior art storage management architectures do not provide
acopy function and subsequent methods for high availability,
load balancing, and tiered storage which are independent of
the host systems and which are applicable to a variety of
storage systems including disk systems and tape libraries.

There is a need in the art to address the aforementioned
problem.

SUMMARY OF THE INVENTION

In one embodiment, a method is provided for virtualizing
and managing a storage virtualization system (SVS) in a
storage management architecture. The SVS is connected to
one or more storage systems. The one or more storage system
includes a plurality of storage media. Upon completion of
write operations to a source storage media, source data is
copied from the source storage media to target data in a target
storage media based on a predefined copy policy in a copy
mapping table. A least utilized storage system which holds a
copy of the requested storage media is determined. Respon-
sive to the determination of the least utilized storage system,
access to the requested storage media in the least utilized
storage system is tested. If access to the requested storage
media in the least utilized storage system is not possible,
access to a copy of the requested storage media in another
storage system is provided by updating a frontend-backend
mapping table and forwarding all data access commands to
the other storage system.

In another embodiment, a data processing system is pro-
vided for virtualizing and managing a storage virtualization
system (SVS) in a storage management architecture. The
SVS is connected to one or more storage systems. The one or
more storage system includes a plurality of storage media.
Upon completion of write operations to a source storage
media, source data is copied from the source storage media to
target data in a target storage media based on a predefined
copy policy in a copy mapping table. A least utilized storage
system which holds a copy of the requested storage media is
determined. Responsive to the determination of the least uti-
lized storage system, access to the requested storage media in
the least utilized storage system is tested. If access to the
requested storage media in the least utilized storage system is
not possible, access to a copy of the requested storage media

15

20

40

45

55

2

in another storage system is provided by updating a frontend-
backend mapping table and forwarding all data access com-
mands to the other storage system.

In a further embodiment, a computer program product is
provided for virtualizing and managing a storage virtualiza-
tion system (SVS) in a storage management architecture. The
SVS is connected to one or more storage systems. The one or
more storage system includes a plurality of storage media.
Upon completion of write operations to a source storage
media, source data is copied from the source storage media to
target data in a target storage media based on a predefined
copy policy in a copy mapping table. A least utilized storage
system which holds a copy of the requested storage media is
determined. Responsive to the determination of the least uti-
lized storage system, access to the requested storage media in
the least utilized storage system is tested. If access to the
requested storage media in the least utilized storage system is
not possible, access to a copy of the requested storage media
in another storage system is provided by updating a frontend-
backend mapping table and forwarding all data access com-
mands to the other storage system.

In yet a further embodiment, a data processing system is
provided for virtualizing and managing a storage virtualiza-
tion system (SVS) in a storage management architecture
including one or more host systems connected to the SVS.
The SVS is connected to one or more storage systems. The
one or more storage system includes a plurality of storage
media. The data processing system includes a SVS located in
the data path between the one or more host systems and the
one or more storage systems, means for managing a frontend-
to-backend mapping table, the frontend-to-backend mapping
table mapping backend resources to frontend resources,
means for managing a copy mapping table, the copy mapping
table mapping a primary storage media to one or more sec-
ondary storage media and a copy policy where a storage
media is identifiable by a serial number, a logical disk is
identifiable by a logical unit number physically represented
by one or more hard disks or solid state disks, or an optical
disk is identifiable by a unique volume identifier, and means
for managing a migration mapping table, the migration map-
ping table mapping a source storage media to a migration
storage media and a migration policy.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the advantages of the invention will be readily
understood, a more particular description of the invention
briefly described above will be rendered by reference to spe-
cific embodiments that are illustrated in the appended draw-
ings. Understanding that these drawings depict only embodi-
ments of the invention and are not therefore to be considered
to be limiting of its scope, the invention will be described and
explained with additional specificity and detail through the
use of the accompanying drawings, in which:

FIG. 1 is a schematic depiction illustrating the most basic
structural components of a prior art storage management
architecture;

FIG. 2 is a schematic depiction illustrating the most basic
structural components of a storage management architecture
including a storage virtualization system, according to one
embodiment;

FIG. 3 is a schematic depiction illustrating the most basic
structural components of a storage virtualization system,
according to one embodiment;

FIG. 4 is a schematic depiction illustrating a copy process,
according to one embodiment;

US 9,158,473 B2

3

FIG. 5 is a schematic depiction illustrating a load-balanc-
ing and high-availability process, according to one embodi-
ment; and

FIG. 6 is a schematic depiction illustrating a migration
process, according to one embodiment.

DETAILED DESCRIPTION OF THE DRAWINGS

According to one aspect of the present invention, a storage
management architecture is provided which includes one or
more host systems connected to a storage virtualization sys-
tem (SVS), which has one or more storage systems in form of
disk systems and/or one or more tape libraries connected
thereto. The host systems issue commands to the storage
systems, such as SCSI read and write commands, which are
intercepted by the SVS and processed by methods described
herein. Disk systems and tape libraries may be represented by
either physical or virtual systems and/or systems performing
additional functions such as data deduplication.

A typical prior art storage management architecture will be
described with reference to FIG. 1. Storage management
architecture 100 comprises various host systems (102, 104,
106, 108) that write or read data to and from storage media
(120, 122, 124, 130, 132, 136). Host systems are differenti-
ated depending on the storage media they are using, such as
disk (120, 122, 124), tape (130,132, 136) or both. Therefore,
host systems are separated into disk management systems
(DMS) 102, tape management systems (TMS) 104 and disk-
tape management systems (DTMS) 106, 108. The host sys-
tem runs applications which essentially write and read data to
and from storage media and keep an internal catalogue map-
ping data to storage media.

In the storage management architecture 100, there may be
separated networks used for accessing data on disk and on
tape. Therefore, DMS 102 is connected to disk-network 110
and TMS 104 is connected to tape-network 112. DTMS 106
and 108 have the ability to use both disk and tape. Therefore,
DTMS 106 and 108 are connected to both networks 110 and
112. Disk systems (DS) 120,122,124 are attached to disk-
network 110 and tape libraries 130,132,136 are attached to
tape-network 112. Networks 110 and 112 may be represented
by a Storage Area Network (SAN) which is based on the Fibre
Channel Protocol (FCP). The I/O protocols might be based on
the ANSI standard SCSI T10 command set which is for
example mapped on the fibre channel protocol.

Networks 110 and 112 may also be one and the same
network where DMS are mapped to disk systems and TMS
are mapped to tape systems.

In a prior art storage management architecture, storage
media may be either a logical disk or a tape. A logical disk
exists within a disk system (DS) like a DS 120, 122 0or 124. A
tape is used in a tape library like Physical Tape Library (PTL)
130, or Virtual Tape Library (VTL) 132, PTL 134 or data
deduplication engine (DDE) 136. Logical disk and tapes are
subsequently also referred to as storage media.

A disk system 120, 122,124, such as the IBM® DS4700,
comprises multiple hard disks and a common disk control
unit.

According to user needs, there is the possibility to group
hard disks together to logical disks of variable size, which are
represented towards the host system. A logical disk is a block
oriented I/O device, which means that if a DMS wants to
read/write data from/to a logical disk, the DMS uses SCSI
commands to select the block addresses of the logical disk
where the data shall reside and essentially reads/writes the
data from/to that block addresses of the logical disk.

20

40

45

4

A disk-network 110 may be enhanced by a storage virtu-
alization controller (SVC) 114, such as the IBM® SVC. A
SVC creates an abstraction layer between DMS and disk
systems. The SVC is capable of migrating and copying data
between different disk systems. The SVC represents logical
disks to the DMS (102) or DTMS (106, 108) and maps the
logical disks internally to the logical disk of the appropriate
physical disk system (120,122,124). A DMS is never aware of
the existence of a SVC, therefore the DMS also doesn’t know
on which disk system the logical disk is stored physically.

A tape library 130, 132, 134, 136 comprises medium
changer, tape drives and tape cartridges. A tape library may be
either physical or virtual and provide additional functions like
data deduplication. Therefore three types of tape libraries
exist: physical tape library (PTL) 130, virtual tape library
(VTL) 132 with an optional PTL 134 in the backend and
deduplication engine (DDE) 136.

Physical tape libraries (PTL) 130—for example the IBM®
TS3500—comprise a plurality of physical tape drives con-
nected to network 112, a plurality of physical storage slots
which are used to store a plurality of physical tape cartridges
(physical tapes) and a medium changer which is used to move
tape cartridges from storage slots to tape drives and vice
versa.

A Virtual Tape Library (VTL) 132 is a disk-based tape
library that offers virtual tape resources which are emulated
by a virtualization software executed by VTL 132. Tape
operations from a TMS point of view are the same between a
VTL 132 and PTL 130. The only difference between a VIL
132 and PTL 130 is that the VIL emulates the virtual
resources by means of software and the virtual tape cartridges
(virtual tapes) are stored on a disk system comprised in the
VTL. The VTL 132 emulates virtual tape drives and virtual
storage slots which are used to store virtual tapes. The VTL
also provides a virtual medium changer which is used to
virtually move virtual tapes from virtual slots in virtual tape
drives and vice versa.

A VTL 132 may include a PTL 134 in the back-end and
may provide additional functions for managing the virtual
tapes stored in the disk system of a VTL. One function is an
integrated backup function which copies the data from a
virtual tape in VIL 132 (stored on disk) to a physical tape in
PTL 134. Another function is a tiered storage function where
the data is migrated from virtual tape to physical tape based
on certain predetermined storage policies. Yet another func-
tion provides high availability where the data residing on disk
and tape is provided from a storage location which is avail-
able. In other words, if the data on disk is not available it may
still be accessed on tape which provides high availability.

A deduplication engine (DDE) 136 according to the prior
art is similar to VTL 132 but provides some additional data
deduplication functionality. Data deduplication is a process
which identifies identical blocks of data within a set of data
and stores it only once. This greatly contributes to save stor-
age capacity. The DDE 136—like a VIL 132—emulates
virtual resources like virtual tape drives, virtual storage slots
for storing virtual tapes and a virtual medium changer which
is used to virtually move virtual tapes from virtual slots in
virtual tape drives and vice versa. Virtual tapes which are
written and read by a TMS such as 104 are deduplicated and
stored on a disk system included in the DDE 136. A DDE 136
according to prior art does usually not provide functions to
migrate, copy or export data to physical tape.

From a TMS 104 point of view it doesn’t make a difference
if it uses tapes within a PTL 130, a VTL 132 or a DDE 136.
Tape operations are all the same and the TMS isn’t even aware
if it writes to a PTL, VTL or DDE. When a TMS wants to

US 9,158,473 B2

5

read/write date from/to a tape it first sends a command to a
tape library instructing the medium changer to move a tape
cartridge into a tape drive. The medium changer executes the
command and when the tape cartridge is loaded in a tape
drive, the TMS may read or write data to that tape cartridge
using prior art SCSI commands.

ADTMS 106, 108 is capable of using both logical disk and
tapes (virtual and physical) to read/write data. Therefore a
DTMS may provide functions in regards to high availability
by using copies on both disk and tape. Also a DTMS may
provide tiered storage functionality by migrating data from
disk to tape or vice versa. A DTMS uses exactly the same
SCSl access methods to disk and tape like a DMS or TMS, but
consolidates this functionality within one host system.

Storage management architecture 100 according to prior
art as described above has some significant shortcomings in
regards to high availability with multiple storage media cop-
ies, load balancing, and tiered storage.

First, prior art disadvantages in relation to high availability
with multiple storage media copies will be described next
below:

High availability in a prior art storage management archi-
tecture 100 may be achieved by having multiple storage
devices such as PTL 130, VTL 132 and DDE 136 and disk
systems 120, 122 and 124 connected to a host system such as
DMS 102, DTMS 106, 108 or TMS 104 via the networks 110
and 112. Host systems write/read data to/from storage media
which may be tapes denoted by a VOLSER and located in a
tape library (130, 132, 136) or logical disk denoted by a logic
unit number and located in a disk system (120, 122, 124).
Host systems may further create copies of source storage
media onto target storage media whereby a DMS may only
create copies of logical disks on disk system 120, 122 and
124, a TMS may only create copies of tapes on tape systems
130,132,136 connected to it. A DTMS is additionally capable
of copying data from logical disks of disk systems (120,122,
124) to tapes in tape systems (130, 132 and 136) and vice
versa. When a copy is created, high availability may be
achieved, because if the primary copy of a storage media is
unavailable, the host system may access the secondary copy
on another storage media. However, the disadvantage of this
operation is that the host system carries the workload for
creating copies of storage media because host systems have
other workload-intensive tasks to handle. In addition, host
systems may only create copies on storage devices which are
connected to the host system and it requires high administra-
tive overhead to connect all storage devices to all host sys-
tems.

A VTL 132 with a PTL 134 attached in the backend may
perform the copy of a source virtual tape to a target physical
tape in PTL 134 and provide subsequent high availability
independent of the host system. This would relieve the burden
from the host system. However capability is limited to the
VTL 132 and it is not applicable for disk system 120, 122 and
124 and PTL 130 and DDE 136. Thus a heterogeneous envi-
ronment with multiple types of storage systems may not
benefit from these functions and puts the burden on the host
system.

Next, the disadvantages of the prior art with respect to load
balancing will be discussed.

In a storage management architecture 100 where multiple
storage devices such as tape libraries 130, 132, 136 and disk
systems 120, 122 and 124 are attached to multiple host sys-
tems such as 102,104, 106, 108 it is not possible to implement
means of load balancing. For example if TMS 104 wants to
read data from a tape with VOLSER 123456 in PTL 130 and
PTL 130 is already used by DTMS 108 and 106 then TMS 104

10

20

25

30

35

40

45

50

55

60

65

6

may not perform well due to a high load on PTL 130. Thus
there is no way for TMS 104 to determine that DTMS 106 and
108 are already accessing PTL 130 in order to use a secondary
copy of tape 123456 within another tape library. This yields in
performance degradations for PTL 130 while VTL 132 and
DDE 136 are not used.

Finally, the disadvantages of prior art in respect of tiered
storage will be discussed.

Tiered storage means the migration of data from one stor-
age medium to another. More particular, in a storage manage-
ment architecture 100 it is desirable to migrate data from a
logical disk within disk system 120, 122 or 124 to a tape
within tape library 130, 132 or 136. This may only be accom-
plished by the host systems which are connected to the
respective storage systems. So DMS 102 may only migrate
logical disks from one disk system such as 120 to another disk
system such as 122, but is not able to migrate the data to a tape
within a tape library (130, 132, 136). Likewise TMS 104 may
only migrate the data from one tape within a tape library such
as DDE 136 to another tape within another tape library such
as PTL 130. DTMS 106 and 108 may migrate the data from a
logical disk within a disk system such as 124 to a tape within
a tape library such as PTL 130. However, the migration of
data puts additional workload on the host systems (102, 104,
106 and 108). In addition the tiered storage migration is not
possible to all storage systems, because a given host system
may only address the storage systems which are connected to
it.

According to one aspect of the present invention, improved
methods and respective systems for virtualizing storage sys-
tems are provided. This is achieved by the features stated in
enclosed independent claims, basically by providing copies
of storage media and performing high availability, load bal-
ancing and tiered storage functions independently of the host
systems. The methods include the steps of creating a copy of
the data being written to storage systems and providing sub-
sequent high availability, load balancing and tiered storage
functions.

Further advantageous arrangements and embodiments of
the invention are set forth in the respective subclaims. Refer-
ence should now be made to the appended claims.

According to one of its basic aspects, the present invention
discloses a storage virtualization system (SVS) which virtu-
alizes storage systems of different storage technologies (disk,
tape, optical, solid state disk), whereby host systems are using
storage media located in such storage systems for reading and
writing data; the storage virtualization system is character-
ized by a) being located in the data path between host systems
and storage systems (disk, tape, optical, SSD), b) managing a
frontend-to-backend mapping table, which maps backend
resources to frontend resources, ¢) managing a copy mapping
table mapping a primary storage media to one or more sec-
ondary storage media and a copy policy where a storage
media may be a tape identified by a serial number (VOLSER)
or a logical disk identified by a logical unit number (LUN)
which is physically represented by one or more hard disks or
solid state disks, or an optical disk identified by a unique
volume identifier, such as CD or DVD or also a holographic
storage medium, and d) managing a migration mapping table
mapping a source storage media to a migration storage media
and a migration policy.

The storage virtualization system performs methods char-
acterized by the following steps: a) upon completion of write
operations to a storage media—such as a tape or a logical
disk—copying data of the source storage media to a target
storage media based on a predefined copy policy in the copy
mapping table, b) upon completion of that copy process track-

US 9,158,473 B2

7

ing relation between the source and the target data in a copy
mapping table, ¢) upon reception of a read command to a
storage media (such as a logical disk or a tape) determining if
a copy of the requested data exists using the copy mapping
table,) determining the storage system which holds a copy
of'the requested storage media and is least utilized, f) respon-
sive to this determination testing the access to the storage
media in the least utilized storage system, and g) if access to
the storage media in the least utilized storage system is not
possible, provide access to another copy of the storage media
within another storage system by updating the frontend-back-
end mapping table and forwarding all data access commands
to the other storage system.

The storage virtualization system further provides methods
for tiered storage by migration of data which is characterized
by the following steps: a) tiered storage policies are config-
ured in a migration mapping table pertaining to the storage
virtualization system mapping a source storage media to a
target storage media and a migration policy, b) determining if
a migration policy condition is true, ¢) responsive to this
migration policy condition determine source storage media
and target storage media, d) determining if a copy relation
between source storage media and migration storage media
exists using the copy mapping table, and e) if the relation
exists removing the data on the source storage media and
otherwise copying the data of the source storage media to the
migration storage media and upon completion removing the
data on the source storage media and updating the migration
mapping table.

The storage media referred to herein may basically be of
any physical type, i.e., one or more hard disks or solid state
disks, or an optical disk such as CD or DVD, or also a
holographic storage medium.

With general reference to the figures, and with special
reference now to FIG. 2, the basic storage management archi-
tecture 100 (FIG. 1) is extended to the storage management
architecture 200 by the SVS 202, as described herein, which
is located in the data path between host systems 102, 104,
106, 108 and the disk systems 120, 122, 124 and the storage
virtualization system 114 and the tape libraries 130, 132 and
136. SVS 202 is connected to host network 204 in the fron-
tend which provides connectivity to the host systems. Net-
work 204 may be a one common network or separated net-
works like disk-network 110 and tape-network 112 in FI1G. 1.
In the backend, SVS 202 is connected to network 206 which
provides connectivity to all storage systems. Network 204
and 206 may be one and the same network and use the same
protocol, such as fibre channel protocol with the SCSI com-
mand set. They may also be distinct networks for perfor-
mance reasons.

With reference to FIG. 3, SVS 202 includes a frontend
engine 320, a logic 322, a backend engine 324 and an admin-
istrative interface 326. The following legend is valid: 204
denotes a Front-End (FE) network; 206 denotes a Back-End
(BE) network; 320 denotes a FE engine; 322 denotes a SVS
logic; 324 denotes a BE engine; 326 denotes an administra-
tion interface; 330 denotes a FE-BE mapping table; 340
denotes a copy mapping table; and 350 denotes a migration
mapping table.

Frontend engine 320 includes network ports which are
connected to network 204 (FIG. 2). The frontend engine
emulates the storage devices to the host systems which are
seen and provided by the backend engine 324 and which are
configured in the frontend-backend mapping table 330. The
frontend engine 320 decouples the storage devices in the
backend (120, 122, 124, 130, 132, 136 in FIG. 2) from the
host systems. Host systems may access the devices emulated

10

15

20

25

30

35

40

45

50

55

60

65

8

by the frontend engine just like normal storage systems
according to prior art. The frontend engine is able to intercept
certain commands—such as SCSI commands—sent by a host
system to a frontend device. Additionally, the frontend engine
allows to transparently switch backend devices for one fron-
tend device when required by the methods described herein.
For example, if the host system “sees” a tape in PTL 130 the
frontend engine 320 and the SVS logic 322 may redirect
(switch) the access to a tape of the same type in VTL 132 and
the frontend engine will pass all /O to the VTL 132.

The backend engine 324 includes network ports which are
connected to network 206 (FIG. 2). The backend engine pro-
vides access to the storage systems in the backend such as
disk system 120, 122, 124 and tape libraries 130,132 and 136
via network 206. The backend engine discovers all backend
devices and their type and identifier by using standard SCSI
commands such as the SCSI inquiry command and provides
all backend devices to the frontend-backend mapping table.

The administrator interface 326 allows the administrator of
the SVS 202 to configure frontend-backend device mapping,
copy policies and migration policies within the SVS logic
322. Administrative interface 326 might be represented by a
graphical user interface including the appropriate graphical
and logical elements.

The SVS logic 322 manages the frontend-backend map-
ping table 330, the copy mapping table 340 and the migration
mapping table 350. It therefore integrates into the frontend
and backend engine by means of communication. This means
the SVS logic communicates with frontend and backend
engine as outlined in processes 400, 500 and 600. Further-
more the SVS logic performs the methods using these tables
and the frontend and backend engine.

The frontend-backend mapping table 330 (i.e., Table 1)
maps the backend devices which are identified by a unique
identifier according to prior art to frontend devices:

TABLE 1

Frontend Alternative
Backend Device Device backend Device Backend Tapes
Lib 123456, drive Lib 123456, Lib 123456, drive A12345-A23456
654321 drive 654321 736456
WWPN 678901, WWPN N/A
LUN 23 678901,

LUN23

Lib 123456, drive
736456

B10000-B10010

Backend devices (column 1) are identified by the backend
engine 324. The backend engine thereby probes the storage
systems via network 206 for example by using prior art SCSI
inquiry commands which return the type of storage system
and the identifiers.

Tape devices included intape libraries 130,132 and 136 are
identified by the serial number of the library and the serial
number of the drive as shown in row 2 and 4. Disk devices are
identified by the world-wide port name (WWPN) of the disk
system and the logical unit number (LUN) of the logical disk
as shown in row 3.

Frontend devices (column 2) are emulated by the frontend
engine 320 to the host systems. There is a unique mapping
between frontend and backend devices which is configured
by the user via administrative user interface 326. However,
not all backend devices must be mapped to frontend devices
as shown in row 4. Backend devices which are not mapped
may be exclusively used for copy process 400 and/or migra-
tion process 600.

US 9,158,473 B2

9

For providing means of high-availability and load-balanc-
ing there may exist one or more alternative backend devices
(column 3) for a frontend-backend mapping entry. An alter-
native device is used in case the original backend device
(column 1) is unavailable or already under a high load. If an
alternative device is to be used, the SVS logic 322 forwards all
1/0 from the fronted device (column 2) to the designated
alternative device (column 3), according to the detailed
description in process 500, which is described later.

Backend tapes (column 4) are discovered by backend
engine 324 using standard SCSI inventory commands. Back-
end tapes are denoted by a VOLSER which reside in the
backend tape library (column 1). All or a subset of tapes in a
backend library may be mapped to a frontend library. This
allows giving host systems access to a subset of tapes in the
backend tape library while other tapes might be used as target
tapes for copies which is managed by the SVS logic 322 in
conjunction with copy mapping table 340 and migration map-
ping table 350. For example row 2 shows the tapes with
VOLSER A12345-A23456 which are mapped to frontend
library with serial number 123456 and which reside in back-
end library with serial number 123456. Row 4 shows the tapes
with VOLSER B10000-B10010 residing in backend tape
library 123456 and which are not mapped to the frontend.

The assignment of frontend, backend devices and tapes is
done by an administrator which may access the SVS logic 322
via interface 326.

The copy mapping table 340 (Table 2) maps the source
storage media to the target storage media including the copy
policy and the copy status. A storage media may be a tape in
atapelibrary (130,132, 136) or it may be a logical disk within
a disk system (120, 122, 124):

TABLE 2

Source Medium Target Medium Copy Policy Status
Lib 12345 (136) Lib 67890 (130) When full Done
Tape A12345 Tape B12345
WWPN 678901, WWPN 13579, Always Pending
LUN 23 LUN 12
WWPN 798793, LUN 3 Lib 45678 (132) Incremental In progress

Tape B12567
Lib 45678 (132) Lib 67890 (130) Deferred Scheduled
Tape X12345 Tape B55555 [9:00 AM

10/10/2010]

Column 1 of copy mapping table 340 includes the source
storage media. A source storage medium is denoted by a
unique identifier. For tapes (row 2, column 1) this is the serial
number of the library and the VOLSER of'the tape. For logical
disks (row 3, column 1) this is the WWPN of the disk system
and the LUN of the logical drive.

Column 2 includes the target storage media which may be
a tape (row 2, column 2) denoted by the serial of the library
and the VOLSER of the tape or a logical disk (row 3, column
2) denoted by the WWPN of the disk system and the appro-
priate LUN.

Column 3 includes the copy policy which may be one of the
following: Always: copy all data from the source storage
medium to the target storage medium at any time new data is
written to the source storage medium. When full: start the
copy process after a source storage medium is written full
(e.g. tape is at End of tape this may be determined by a
LOGSENSE command to the tape which is mounted; e.g.
logical disk has no space left). Incremental: only the blocks
which are newly written. This requires memorizing all block
addresses which are written. This may be done by intercept-
ing all mount/reserve commands received from the frontend

10

15

20

25

30

35

40

45

50

55

60

65

10

engine for this tape/logical disk while the tape/logical disk
was mounted/reserved. Deferred [DATE]: copy at a later
point of time; exact time and date when copy will take place
is given in parameter [DATE].

Column 4 includes the copy status which may be one of the
following: Done: the copy has been done according to the
copy policy. Pending: the copy has not been done according to
the copy policy. In Progress: The copy is in progress. Sched-
uled: the copy will take place on date/time given in parameter
[DATE] of copy policy for deferred copies

For example, according to the second row of table 340, the
source storage medium is a tape with VOLSER A12345 in
library with serial number 12345 which might be DDE 136
according to FIG. 2. The target medium is a tape with
VOLSER B12345 in the library with serial number 67890
which might be PTL 130 according to FIG. 2. The copy policy
is set to “When full” which means that the source tape is
copied to the target tape when it is full. The copy status is
“done” indicating that the copy has been completed.

According to the third row of table 340, the source storage
media is a logical disk with LUN 23 on disk system with
WWPN 678901 and the target storage medium is a logical
disk with LUN 12 on disk system with WWPN 13579. The
copy policy is set to “Always” which means that all data is
copied to the target storage media. The copy status is “pend-
ing” indicating that the copy has not been started yet.

According to the fourth row oftable 340, the source storage
medium is a logical disk with LUN 3 on disk system with
WWPN 798793 and the target storage medium is a tape with
VOLSER B12567 in tape library serial number 45678 which
might be VTL 132 according to FIG. 2. The copy policy is set
to “incremental”, which means that all newly written blocks
should be copied to the target storage medium. The copy
status is “in progress” indicating that the copy is currently
taking place.

According to row 5 of table 340 tape with VOLSER
X12345 in library 45678, which might be VTL 132, has copy
policy deferred with parameter “9:00 AM, Oct. 10, 2010”
with status “scheduled”. This means tape X12345 will be
copied to tape B55555 in library 67890, which might be PTL
130 on Oct. 10, 2010 at 9:00 AM.

People skilled in the art will recognize that more combi-
nation of source storage medium types (disk, tape, optical,
solid state disk) and target storage medium types (disk, tape,
optical, solid state disk), copy policies and copy states are
possible.

The migration mapping table 350 (Table 3) maps the
source storage media to the migration storage media includ-
ing the migration policy and the migration status:

TABLE 3
Migration

Source medium Migration medium policy Status
Lib 12345 (136) Lib 67890 (130) ‘When full Done
Tape A12345 Tape B12345
WWPN 678901, WWPN 13579, After 10 days Pending
LUN 23 LUN 12
WWPN 798793, Lib45678(132) When full In progress
LUN3 Tape B12567

Similar to copy mapping table 340 the source storage
medium (column 1) uniquely identifies a tape in a tape library
or a logical disk in a disk system.

Migration storage medium (column 2) specifies the storage
medium for the migration which may again be a tape in a tape
library or a logical disk in a disk system.

US 9,158,473 B2

11

The migration policy (column 3) specifies the condition
under which the source storage medium is migrated to a
migration destination storage medium. A migration policy
may for example be one of the following: When full: perform
the migration to the migration storage medium when the
source storage medium is full. After x days: perform the
migration to the migration storage medium x days after the
source storage medium has been written.

The migration status indicates the status of the migration
from the source storage medium (column 1) to the migration
storage medium (column 2). The status may be one of the
following: Done: the migration has been finished according to
the migration policy. Pending: the migration has not been
started according to the migration policy. In Progress: The
migration is in progress.

For example, according to the second row of migration
mapping table 350, the source storage medium is a tape with
VOLSER A12345 in library with serial number 12345 which
might be DDE 136 according to FIG. 2. The migration storage
medium is a tape with VOLSER B12345 in library with serial
number 67890 which might be PTL 130 according to FIG. 2.
The migration policy is set to “When full” which means that
the source tape is migrated to the target tape when it is full.
The migration status is “done” indicating that the migration
been completed.

According to the third row of table 350, the source storage
medium is a logical disk with LUN 23 on disk system with
WWPN 678901 and the migration storage medium is a logi-
caldisk with LUN 12 on disk system with WWPN 13579. The
migration policy set to “After 10 days” which means that all
data of the source disk is migrated to the migration disk 10
days after data has been written to the source disk. The migra-
tion status is “pending” indicating that the migration has not
been started yet.

According to the fourth row oftable 350, the source storage
medium is a logical disk with LUN 3 on disk system with
WWPN 798793 and the migration storage medium is a tape
with VOLSER B12567 in tape library serial number 45678
which might be VTL 132 according to FIG. 2. The migration
policy is set to “When full” which means that the data of the
source disk is migrated to the target tape when the source disk
is full. The migration status is “in progress” indicating that the
migration is currently taking place.

People skilled in the art will recognize that more combi-
nation of source storage medium types (disk, tape, optical,
solid state disk) and target storage medium types (disk, tape,
optical, solid state disk), copy policies and copy states are
possible.

People skilled in the art will recognize that copy mapping
table 340 and migration mapping table 350 may be combined
into one table. This is particularly advantageous if the target
storage media for the copy (column 2 of table 340) is the same
as the migration storage media (column 2 of table 350)
because in this case the migration does not require any data
movement.

The SVS 202 and in particular the SVS logic 322 in con-
junction with backend engine 324 and frontend engine 320
and the copy mapping table 340 provides a automated method
for copying source storage media to target storage media.
This assumes that an administrator has configured copy poli-
cies via interface 326 which are stored in copy mapping table
340. The copy process 400 is explained in FIG. 4.

A typical copy process begins (step 402), when a host
system has finished writing to a specific storage medium such
as on a tape or a logical disk. The host system sends a dis-
mount/release command (in a tape environment this is a dis-
mount command, in a disk environment this is a release

10

15

20

25

30

35

40

45

55

60

65

12

command). The SVS receives this command through its fron-
tend engine 320 (step 404) and intercepts the command for
subsequent processing.

The process checks the copy mapping table 340 (step 406)
if a copy policy (column 3) for the source storage medium
exists (step 408). A tape is denoted by a VOLSER and a
library ID and a logical disk is denoted by the WWPN of the
disk system and the logical unit number. If a copy policy
exists, the process determines the target medium (column 2 in
copy-mapping-table 340). Then it copies the data from the
previously written source medium to the target medium
according to the copy policy (step 410).

In particular if the copy policy is “incremental”, only the
data that was written through the last session is copied and
appended on the target copy.

Ifthe copy policy is “when full”, a storage medium may be
loaded and written multiple times and is only copied when the
storage medium is written completely full.

Copy policy “always” copies the whole tape after every
write session.

If the copy policy is deferred the copy is scheduled for a
given time/day. The information, when a copy will take place
is given by the [DATE]-parameter. The SVS logic 322 sub-
sequently checks if there are scheduled copy jobs to be
executed.

The process updates the copy mapping 340 table column 4
with the status of the copy process (step 412) and dismounts/
releases both source and target storage medium (step 414). If
the dismount/release finishes successful, the process reports a
successful dismount/release to the host system (step 416).

The SVS 202 and in particular the SVS logic 322 in con-
junction with backend 324 and frontend engine 320, the copy
mapping table 340 and the frontend-backend mapping table
330 provides a process 500 for providing high availability and
load balancing. The load-balancing and high availability pro-
cess 500 is explained in FIG. 5.

The process starts when a host system (102, 104, 106, 108
in FIG. 2) wants to access (read/write) data on a storage
medium (step 502). The access to the storage medium is
indicated by a command sent from a host system to the SVS
202 (FIG. 2).

More particular, if the storage medium is a tape the host
system sends a SCSI mount command which instructs the
corresponding tape library emulated by the frontend engine to
mount the tape into a tape drive. If the storage medium is a
logical disk the data access is either indicated by a SCSI
reserve command or by a SCSI read or write command. The
command is received and intercepted by the frontend engine
320 of SVS 202 and passed on to the SVS logic 322 running
process 500.

The process uses the copy mapping table 340 column 2 to
determine, how much copies of the storage medium exist
(step 504) and in which backend storage system they reside.
The number of copies is denoted by the number of storage
media entries in column 2 of copy mapping table 340.

The process 500 then checks which storage system holding
a copy of the storage medium is least utilized (step 506). This
is done by checking how much backend devices of the back-
end storage system are currently in use, for example how
much tapes are mounted in a tape library.

The storage medium copy in the least utilized storage sys-
tem is selected and the backend engine 324 (FIG. 3) is
instructed to test the access to the copy (step 508) by issuing
amount/reserve command to the appropriate backend device.
If the copy is available, the process proceeds to step 520
which is explained later.

US 9,158,473 B2

13

Otherwise the process flows to step 512 where the SVS
logic 322 notifies the administrator of an inaccessible storage
media copy and checks for the availability of more copies
(step 514) using the copy mapping table, step 514.

If more copies are available in step 514 the process selects
the next copy of the storage medium (step 516) and tests this
also for availability (step 508). If no additional copy is avail-
able in step 514, the process reports an error to the host system
which requested the access in step 502 and notifies the admin-
istrator about the problem (step 518).

In step 520, the process uses the frontend-backend map-
pingtable 330 column 1 and 2 to check if the selected backend
storage system (from step 506) is identical to the frontend
storage system which received the data access command in
step 502. If the storage system is identical then the process
continues to step 524. Otherwise, if the storage system is not
identical the process proceeds to step 522 and updates the
frontend-backend mapping table column 3 with the selected
backend storage system identifier and proceeds to step 524.

In step 524, the process provides transparent access for the
host system to the selected the storage medium holding a copy
of the data, independent which storage medium was
addressed by the host system in step 502. Subsequently, SVS
logic 322 forwards all commands received via the frontend
engine for the storage medium/device addressed in step 502
to the selected storage medium according to the frontend-
backend mapping table 330 column 3.

In step 526, the process checks if the data access to the
frontend storage medium/device has finished by the host sys-
tem. For example, in a tape environment the host has sent a
dismount command, in a disk environment the host has sent a
release command or the read or write command has finished.

If the answer in step 526 is yes then the process continues
to step 528 where the frontend-backend mapping table 330 is
updated in column 3. Thereby the entry from this column
3—added in step 522—is removed. Otherwise, if the answer
in step 526 is no the process flows back to step 526 where is
checks again if the access has completed.

The SVS system 202 and in particular the SVS logic 322 in
conjunction with backend engine 324 and frontend engine
320 and the migration mapping table 350 and the copy map-
ping table 340 provides a method for migrating source storage
media to migration storage media. This assumes that the
administrator has configured migration policies via interface
326 which are stored in migration mapping table 350. The
migration process 600 is explained in FIG. 6.

A migration process 600 is triggered by a migration policy
in column 3 of table 350 in step 602. The migration policy is
a condition which may be based on time, e.g. by schedules or
events e.g. if a source storage medium is written full. The
process periodically checks the migration policies in order to
trigger the migration. When a migration is triggered, the
process determines the source storage medium and the migra-
tion storage medium (step 604). Then the process checks if
the source storage medium already has a copy on the migra-
tion storage medium by checking the copy mapping table 340
column 1, 2 and 4 (step 606). If a copy of the source storage
medium already exist on the migration storage medium, the
process deletes the target medium from column 2 of copy
mapping table 340 (step 608) and updates the migration map-
ping table 350 column with the status of done in step 610.

Ifthe source medium does not have a copy on the migration
medium in step 606 the process copies the source storage
medium to the migration storage medium (step 612) and
subsequently deletes the source storage medium (step 614)
and updates the migration mapping table 350 column 4 with
the status done (step 610).

10

20

35

40

45

50

55

60

65

14

For subsequent data access commands the SVS logic 322
checks the migration mapping table 350 to determine if a
source storage medium (column 1) has been migrated (col-
umn 4) to a migration storage medium (column 2). If this is
the case the SVS logic 322 provides transparent access to the
migration storage medium whenever the source storage
medium is requested for access by the host system.

People skilled in the art will appreciate that the present
invention advantageously extends the prior art possibilities of
combined tape and disk storage managing in regards of high
availability, load-balancing, data backup and data migration.

The invention may take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In a
preferred embodiment, the invention is implemented in soft-
ware, which includes but is not limited to firmware, resident
software, microcode, etc.

Furthermore, the invention may take the form of a com-
puter program product accessible from a computer-usable or
computer-readable medium (having executable portions)
providing program code for use by or in connection with a
computer or any instruction execution system. For the pur-
poses of this description, a computer-usable or computer
readable medium may be any apparatus that may contain,
store, communicate, propagate, or transport the program for
use by or in connection with the instruction execution system,
apparatus, or device.

The medium may be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
ordevice) or a propagation medium. Examples of'a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
arigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk-read only memory (CD-
ROM), compact disk-read/write (CD-R/W) and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements may include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) may be coupled to
the system either directly or through intervening I/O control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.

The circuit as described above is part of the design for an
integrated circuit chip. The chip design is created in a graphi-
cal computer programming language, and stored in a com-
puter storage medium (such as a disk, tape, physical hard
drive, or virtual hard drive such as in a storage access net-
work). If the designer does not fabricate chips or the photo-
lithographic masks used to fabricate chips, the designer trans-
mits the resulting design by physical means (e.g., by
providing a copy of the storage medium storing the design) or
electronically (e.g., through the Internet) to such entities,
directly or indirectly. The stored design is then converted into
the appropriate format (e.g., GDSII) for the fabrication of

US 9,158,473 B2

15

photolithographic masks, which typically include multiple
copies of the chip design in question that are to be formed on
a wafer. The photolithographic masks are utilized to define
areas of the wafer (and/or the layers thereon) to be etched or
otherwise processed.

While one or more embodiments of the present invention
have been illustrated in detail, one of ordinary skill in the art
will appreciate that modifications and adaptations to those
embodiments may be made without departing from the scope
of the present invention as set forth in the following claims.

What is claimed is:
1. A method for virtualizing and managing a storage virtu-
alization system (SVS) in a storage management architecture,
the SVS being connected to one or more storage systems, the
one or more storage systems comprising a plurality of storage
media, the method comprising:
upon completion of write operations to a source storage
media, copying source data from the source storage
media to target data in a target storage media based on a
predefined copy policy in a copy mapping table;

configuring tiered storage policies in a migration mapping
table pertaining to the SVS;

mapping the source storage media to the target storage

media and a migration policy;

determining if a migration policy condition is true;

responsive to the migration policy condition, determining

the source storage media and a migration storage media,
and

determining if a copy relation between source storage

media and migration storage media exists using the copy
mapping table.
2. The method of claim 1, further including:
upon completion ofthe copying of the source data, tracking
a relation between the source data and the target data in
a copy mapping table, and

upon reception of a read command for requested data to a
requested storage media, determining if a copy of the
requested data exists using the copy mapping table.

3. The method of claim 2, further including performing one
of:

determining a least utilized storage system which holds a

copy of the requested storage media,

responsive to the determination of the least utilized storage

system, testing access to the requested storage media in
the least utilized storage system, and

if access to the requested storage media in the least utilized

storage system is not possible, providing access to a
copy of the requested storage media in another storage
system by updating a frontend-backend mapping table
and forwarding all data access commands to the other
storage system.

4. The method of claim 1, further including:

managing a frontend-to-backend mapping table, the fron-

tend-to-backend mapping table mapping backend
resources to frontend resources, and

managing a copy mapping table, the copy mapping table

mapping a primary storage media to one or more sec-
ondary storage media and a copy policy where a storage
media is identifiable by a serial number, a logical disk is
identifiable by a logical unit number physically repre-
sented by one or more hard disks or solid state disks, or
an optical disk is identifiable by a unique volume iden-
tifier.

5. The method of claim 1, further including:

if the copy relation exists, removing the source storage

media from the copy mapping table, and

5

10

15

20

25

30

35

40

45

50

55

60

65

16

if the copy relation does not exist, copying the source data
of the source storage media to the migration storage
media and removing the source data on the source stor-
age media and updating the migration mapping table.
6. A data processing system for virtualizing and managing
a storage virtualization system (SVS) in a storage manage-
ment architecture, the SVS being connected to one or more
storage systems, the one or more storage systems comprising
aplurality of storage media, the data processing system com-
prising:
at least one processor device, operable in the storage man-
agement architecture, wherein the at least one processor
device:
upon completion of write operations to a source storage
media, copying source data from the source storage
media to target data in a target storage media based on
a predefined copy policy in a copy mapping table,
configuring tiered storage policies in a migration map-
ping table pertaining to the SVS,
mapping the source storage media to the target storage
media and a migration policy,
determining if a migration policy condition is true,
responsive to the migration policy condition, determin-
ing the source storage media and a migration storage
media, and
determining if a copy relation between source storage
media and migration storage media exists using the
copy mapping table.
7. The data processing system of claim 6, wherein the at
least one processor device:
upon completion of the copying of the source data, tracks a
relation between the source data and the target data in a
copy mapping table, and
upon reception of a read command for requested data to a
requested storage media, determines if a copy of the
requested data exists using the copy mapping table.
8. The data processing system of claim 7, wherein the at
least one processor device performs each of:
determining a least utilized storage system which holds a
copy of the requested storage media,
responsive to the determination of the least utilized storage
system, testing access to the requested storage media in
the least utilized storage system, and
ifaccess to the requested storage media in the least utilized
storage system is not possible, providing access to a
copy of the requested storage media in another storage
system by updating a frontend-backend mapping table
and forwarding all data access commands to the other
storage system.
9. The data processing system of claim 6, wherein the at
least one processor device performs each of:
managing a frontend-to-backend mapping table, the fron-
tend-to-backend mapping table mapping backend
resources to frontend resources, and
managing a copy mapping table, the copy mapping table
mapping a primary storage media to one or more sec-
ondary storage media and a copy policy where a storage
media is identifiable by a serial number, a logical disk is
identifiable by a logical unit number physically repre-
sented by one or more hard disks or solid state disks, or
an optical disk is identifiable by a unique volume iden-
tifier.
10. The data processing system of claim 6, wherein the at
least one processor device performs each of:
if the copy relation exists, removing the source storage
media from the copy mapping table, and

US 9,158,473 B2

17

if the copy relation does not exist, copying the source data
of the source storage media to the migration storage
media and removing the source data on the source stor-
age media and updating the migration mapping table.

11. A computer program product virtualizing and manag-
ing a storage virtualization system (SVS) in a storage man-
agement architecture, the SVS being connected to one or
more storage systems, the one or more storage systems com-
prising a plurality of storage media, the computer program
product comprising a non-transitory computer-readable stor-
age medium having computer-readable program code por-
tions stored therein, the computer-readable program code
portions comprising:

a first executable portion that, upon completion of write
operations to a source storage media, copies source data
from the source storage media to target data in a target
storage media based on a predefined copy policy in a
copy mapping table;

a second executable portion that configures tiered storage
policies in a migration mapping table pertaining to the
SVS;

a third executable portion that maps the source storage
media to the target storage media and a migration policy;

a fourth executable portion that determines if a migration
policy condition is true;

a fifth executable portion that, responsive to the migration
policy condition, determines the source storage media
and a migration storage media, and

a sixth executable portion that determines if a copy relation
between source storage media and migration storage
media exists using the copy mapping table.

12. The computer program product of claim 11, further
including a seventh executable portion that, upon completion
of'the copying of the source data, tracks a relation between the
source data and the target data in a copy mapping table.

13. The computer program product of claim 12, further
including an eighth executable portion that performs each of:

determining a least utilized storage system which holds a
copy of the requested storage media,

responsive to the determination of the least utilized storage
system, testing access to the requested storage media in
the least utilized storage system, and

if access to the requested storage media in the least utilized
storage system is not possible, providing access to a
copy of the requested storage media in another storage
system by updating a frontend-backend mapping table
and forwarding all data access commands to the other
storage system.

14. The computer program product of claim 13, further
including a seventh executable portion that, upon reception of
a read command for requested data to a requested storage
media, determines if a copy of the requested data exists using
the copy mapping table.

15. The computer program product of claim 13, further
including a seventh executable portion that performs each of:

if the copy relation exists, removing the source storage
media from the copy mapping table, and

if the copy relation does not exist, copying the source data
of the source storage media to the migration storage
media and removing the source data on the source stor-
age media and updating the migration mapping table.

20

25

30

35

40

45

55

18

16. A dataprocessing system for virtualizing and managing
a storage virtualization system (SVS) in a storage manage-
ment architecture comprising one or more host systems con-
nected to the SVS, the SVS being connected to one or more
storage systems, the one or more storage systems comprising
aplurality of storage media, the data processing system com-
prising:

aSVSlocated in the data path between the one or more host

systems and the one or more storage systems;

means for managing a frontend-to-backend mapping table,

the frontend-to-backend mapping table mapping back-
end resources to frontend resources; and

means for managing a copy mapping table, the copy map-

ping table mapping a primary storage media to one or
more secondary storage media and a copy policy where
a storage media is identifiable by a serial number, a
logical disk is identifiable by a logical unit number
physically represented by one or more hard disks or
solid state disks, or an optical disk is identifiable by a
unique volume identifier.

17. The data processing system of claim 16, further includ-
ing a means for managing a migration mapping table, the
migration mapping table mapping a source storage mediato a
migration storage media and a migration policy.

18. The data processing system of claim 16, further includ-
ing a means for performing each one of:

determining a least utilized storage system which holds a

copy of the requested storage media,

responsive to the determination of the least utilized storage

system, testing access to the requested storage media in
the least utilized storage system, and

ifaccess to the requested storage media in the least utilized

storage system is not possible, providing access to a
copy of the requested storage media in another storage
system by updating a frontend-backend mapping table
and forwarding all data access commands to the other
storage system.

19. The data processing system of claim 16, further includ-
ing a means for:

configuring tiered storage policies in a migration mapping

table pertaining to the SVS;

mapping a source storage media to a target storage media

and a migration policy;

determining if a migration policy condition is true;

responsive to the migration policy condition, determining

the source storage media and a migration storage media,
and

determining if a copy relation between source storage

media and migration storage media exists using the copy
mapping table.

20. The data processing system of claim 19, further includ-
ing a means for performing each one of:

if the copy relation exists, removing the source storage

media from the copy mapping table, and

if the copy relation does not exist, copying the source data

of the source storage media to the migration storage
media and removing the source data on the source stor-
age media and updating the migration mapping table.

#* #* #* #* #*

